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Abstract. A detailed comparative study of the structure and workability of various 
rearranged versions of the Dirac method of variation of constants for perturbative treatment 
of quantum dynamics is presented. The variants include a modified strategy proposed 
recently and also a new rearrangement of this form; both of these contain A dependent 
phase factors associated with the amplitudes which are determined order-by-order by 
following a Brillouin-Wigner type perturbation procedure, A being the perturbation para- 
meter. The following classes of perturbation problems are considered: V, ( V exp(iwr) + 
V'exp(- iwr)) , f ( f )V and f(i)( Vexp(iwr)+ VLexp(-iwt)), where . f ( t )  defines some 
suitable adiabatic 'switching' function. Special attention is paid to ( i )  the avoidance of 
divergent parts in the amplitude-correction terms from the schemes, iii) applicability to 
cases involving a degenerate initial state and a 'resonant' harmonic perturbation, ( i i i )  use 
of both exponential and non-exponential forms for f ( r )  and (iv) possible sources of 
convergence difficulties in such variants. The merits and demerits of the schemes concerned 
for the different problems under investigation are also listed, for convenience, in a tabular 
form. 

1. Introduction 

A perturbative approach to quantum dynamics appears frequently in solving several 
kinds of problems of physical and chemical interest (see, e.g., the works of Dalgarno 
(1966) and Langhoff et al (1972), and references therein, for detailed expositions). 
The Dirac method (DM) ,  commonly known as the method of variation of constants 
(Dirac 1926, 1927), is by far the most popular among the various perturbative develop- 
ments in vogue, including the method of multiple time scales (Brooks and Scarfone 
1969, 1982), the Magnus method (Pechukas and  Light 1966), etc (see also Case 1966, 
Langhoff er a1 1972), thus enjoying widespread applications since the inception of 
quantum mechanics. However, it is also true that this method, if applied straightfor- 
wardly, exhibits some undesirable features; these have been discussed, for example, 
by Heinrichs (1968), Todorov (1981), Dong (1983), Bhattacharyya (1984), etc. 

In the course of a recent analysis (Bhattacharyya 1984) with a view to modifying 
the DM, it has been found that actually the choice of the wavefunction $,(A,  r )  in the 
form 

$ ? ( A ,  f )  = E  %,(A, f )dm exp(-iw,,f), (1.1) 
m 

to be employed in the Schrodinger equation ( S E )  
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is responsible for the major difficulties which crop up when we use the perturbation 
expansion 

am(& t )=a‘ ,0’+Aa~’( t )+A2a~’( t )+.  . . (1.4) 

to obtain the coefficients {am(A, t ) }  to some desired orders; as usual, the initial 
conditions ( IC)  are defined as 

a@’ = 1 ab”’( p # s) = 0, a‘,“’(to)=O ( m = s , p  , . . .  ; n = 1 , 2  ,...) (1.5) 

to imply that the system, at t = to, starts evolving from a definite normalised stationary 
state dS. Naturally, then, it is expected that a suitable rearrangement of the form (1.1) 
for $,(A, t )  can generate a proper perturbative development. In fact, such an idea 
motivated studies of Chung (1967), Heinrichs (1968) and Epstein (1969) with the 
rearranged form given by 

(1.6) $s (A,  t )  = as(& t )  exp(- iW)~,(A,  f ) ,  ( 4 S I X S ( A ,  t ) >  = 1, 

which is related to (1.1) in the sense that 

~ s ( h ,  t )  = 4 s  + C A m ( A ,  t ) 4 m  exP(iwsmt), Am(A, t )  = a m ( A ,  t)/as(A, t ) ,  
m f s  

w,, = 0, - w,. (1.7) 

Am(A, t ) = A ‘ , ’ + A ; ’ ( t ) + h 2 A ( , Z ’ ( t ) + .  . . (1.8) 

Here, the coefficients {A,(A, t ) }  are expanded as 

and the IC (1.5) become 

A:’ = 0 = A:’( t o )  p f  s; n = 1,2 , .  . . . (1.9) 

As a result, one finds that a,(A, t )  in (1.6) consists of a nonlinear phase term multiplied 
by a factor which takes care of normalisation of & ( A ,  t ) .  An analysis and some 
applications of this rearranged DM ( R D M )  have been presented by Langhoff et a1 
(1972); they also considered a second rearranged version where only an overall phase 
factor is explicitly taken out of $,(A, t ) .  However, we shall see that such RDM have 
some serious limitations. A different kind of rearrangement (Bhattacharyya 1984) 
which corresponds really to employing undetermined phases within the DM (to be 
termed henceforth the UPDM) proceeds, instead of ( l . l ) ,  with the choice 

+,(A, t )=C b m ( ~ ,  t ) 4 m  exp(-iamt). 
m 

A perturbative development then follows by writing 

& ( A ,  t)=b‘,0’+Ab;’(t)+A2b‘,2’(t)+..,  
and 

cu ,=w,+Aa~’+A 2 a, ( 2 )  + . . . ;  

(1.10) 

(1.11) 

(1.12) 

here the IC are similar to (1.5): b‘,’’ = 1, bF’( p # s) = 0, b‘,“’(to) = 0 (m = s, p ,  . . . ; n = 
1,2 , .  . .). The undetermined {CY:)} are evaluated by requiring the absence of any 
divergent term in { b‘,“’( t ) }  at each order of perturbation. This UPDM can treat success- 
fully a number of problems; but it fails, for example, to deal with the case of an 
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adiabatically switched-on harmonic perturbation. Hence, it appears logical and inter- 
esting to study the form 

+s(A,  t )  = bs(A, t )  exp ( - W ) (  + 1 B m ( A ,  t ) 4 m  exp(ias,t) 

(1.13) 

with as, = a, - a,, & ( A ,  t )  = b,(A, t ) / b , (A ,  t ) ,  which bears the same relation to (1.10) 
as (1.6) does to (1.1). Once again, here, we accordingly use the expansion 

1 m # s  

= b S ( 4  t )  exp(-ia,t)rV,(A, t ) ,  

& ( A ,  t )  = B',O'+ AB!!,'( t ) +  A2B$'( t ) + .  . . (1.14) 

and the IC 

B ~ ' = O = B b " ' ( t , ) ;  p # s ;  n = 1 , 2 , .  . . . (1.15) 

We shall call it the rearranged UPDM (RUPDM).  

The aim of the present work is to investigate the workability of the various variants 
of the DM stated above; specifically, we shall study in detail the performances of the 
RDM and the RUPDM. As regards the perturbation problems, we shall consider the 
more important static and harmonic cases (switched on instantaneously and adiabati- 
cally), given by 

V( t )  = v, (1.16) 

v(t) = v eiW' + V+ e-"', (1.17) 

(1.18) 

(1.19) 

Here f (  t )  is an appropriate 'switching' function required to develop the perturbations 
(from t = tor f (  t o )  = 0) over an infinite time interval to the 'full' values, and hence satisfies 

df( t ) /dt  + 0. ( 1.20) 

Indeed, of these, perturbations like (1.18) and (1.19) which are developed adiabatically 
have special appeal. Thus, whereas (1.18) is intended to investigate the existence of 
a quantum adiabatic theorem (Messiah 1961, Todorov 1981) and hence to establish a 
correspondence between time-independent and time-dependent perturbation theories, 
the 'steady-state' response of a system to harmonic perturbations is studied through 
(1.19) for various properties of interest (Dalgarno 1966, Epstein 1969, Young et a1 
1969, Langhoff et a1 1972). It may be mentioned here that a variety of switching 
functions can be employed in this context (see below). So, we feel obliged to study 
them separately in order to examine if there is any inconvenient form or whether all 
of them furnish equivalent results (see, e.g., Todorov (1981) for a discussion). The 
interest behind studying the form (1.16) lies, among others, in analysing the long-time 
behaviour of coherent states (Krivoshlykov et a1 1982, Brickmann 1983), etc; study of 
the periodic perturbation (1.17) has also drawn considerable attention in various 
contexts (Hogg and Huberman 1982, 1983, Yajima 1984). From our scrutiny, it turns 
out that in fact all the procedures mentioned above have some kind of limitations 
regarding either the applicability to some particular perturbation V( t )  or the ability 
to tackle some specific form of f ( t ) .  So, some remarks on this point are made and a 
more general scheme is sought. 
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The paper is organised as follows. Section 2 presents the structure and  applications 
of the RDM. Section 3 deals with the strategy and workability of the KUPDM. Section 
4 discusses some more important aspects of all the rearrangements with a view to 
framing a very general and convenient perturbation scheme. Section 5, finally, sum- 
marises the conclusions of the present analysis. 

2. Rearrangements of the Dirac method 

It may be easily seen (see, e.g., Bhattacharyya 1984) that if (1.1) is used in (1.2), with 
(1.4) and (1.5) to obtain {a,,(& f)}, terms appear in {a ' , " ' ( t ) }  having t P  dependence 
( p s  1) for either of the perturbations (1.16) and  (1.17); here one chooses t,=O and 
finally finds the long-time behaviour becomes difficult to interpret. For adiabatic 
perturbations also, the trouble of divergence appears i f f (  t )  is chosen in the form of 
exp( Tf )  and finally the limit 7 + 0, is taken (Bhattacharyya 1984); another serious 
difficulty in this context is concerned with the use of non-exponential f( t )  leading to 
the emergence of non-adiabatic terms (Todorov 1981). Hence, we wish to examine 
here the usefulness of the RDM in detail. 

2. I .  Theory 

Let us note that, if (1.6) is put in (1.2), we obtain 

iha,ax,/at = { [ H ( A ,  t )  - hw,]a, -ihaa,/at}x, 

and dividing (2.1) by a, throughout, we then find 

ihax,/at  = [ H ( A ,  t )  - hw, - iha  In a, /d t]xy , ,  (2.2) 
where, for convenience, the A and t dependences of xs and a, are suppressed. The 
q5s projection part of this equation gives 

ihd ln  u , / a r = A ( ~ , I V ( t ) I x I ) = h ~ E , ( A ,  t )  (say!. (2.3) 
We now integrate (2.3), noting from (1.5) that a,(?,) = 1, and  write AE,(A, t )  = 
Re AE,(A, t ) + i  Im AE,(A, t )  to arrive at the following expression for a,: 

% ( A ,  t )  = exp (-; 1' Re AE,(A, t ' )  d t '  
10 

(2.4) 

We may remark that the first part of (2.4) does no: have any observable consequence 
for ultimately only expectation values with respect to $,(A, t )  concern us. To gain 
the significance of the last part of (2.4), we multiply (2.2) by x:, integrate over 
coordinates and subtract from the resulting equation its complex conjugate form. This 
gives 

(2.5) a In(xslxs)/at = ( - 2 A / h )  Im AE, (A ,  t ) .  

A second integration of (2.5), now over the time, shows 

exp($ [ f  Im AE,(A, t ' )  d t '  
f0 

(2.6) 

implying that this part of a, preserves norm of $,(A, t ) .  The determining equation for 
xs (which, in turn, mearis evaluation of {A,(A, t )}  in (1.7)) is given by (2.2) and (2.3). 
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The & projection part of (2.2), with (2.3), leads to the actual working form: 

ihaAk/a t  = AVL exp(iwbf) - AA,V:,+ A 1 A,V',, exp(iw,,t) 
m3-is 

- A &  AmVfm exP(iwsmt), (2.7) 
m f r  

where Vb = (4il V( t)lc#Jj) and A, = Am(A, t ) .  The perturbative procedure then follows 
by employing (1.8) in (2.7), with subsequent use of the IC (1.9) to solve the differential 
equations for A(kn)(t) ( n  = 1,2, . . .). Notably, from (1.6) and (2.4), one finds that $,(A, t )  
takes the form 

Re A E, ( A, t ') d t '/ h 

xexp( A 1' Im AE,(A, t ' )  d t ' l h  
fo  

which can equivalently be written as 

+,(A, t )  = exp[ -i( o,t+ A 5' Re AE,(A, t ' )  d f r / h ) ] ~ , ( ~ , ~ ~ s ) - 1 1 2  (2.9) 
f0 

making use of (2.6); AE,(A, t )  is defined by (2.3). 

another kind of RDM proposed by Langhoff et a1 (1972) where the choice 
The implication of (2.9) naturally motivates investigation of the usefulness of 

is made, with real A&,(& t )  to ensure extraction of only an  overall phase factor from 
+,(A, t ) .  Employing (2.10) in (1.2), we obtain 

ihae , /a t=[H(A,  t ) -hw, -AA&,(A,  t ) ] O , ,  (2.11) 

Since 8, should obviously have the form 

(2.13) 

we put (2.12) and (2.13) in (2.11) to find from the (bk projection part the following 

ihdc,/at = Ac,Vfks exp(iw,,t)+A c,Vfk,,, exp(iw,,t) 
m f s  

c,~:,exp(iw,,t) c,--- ( A d t  
(2.14) 

as the working equation, where cp = cp(A,  t ) ;  p = m, s, . . . . But here we find a difficulty; 
although (2.14) contains e,, there is no determining equation for it. So, to proceed, 
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we have to divide (2.14) throughout by c, which gives 

ihaCk/at = AV;,~ exp(iwkst) + A C C,V;, exp(iwkmt) - ACkV:s 
m f s  

-hck c C,V&, exp(iw,,t) c k  = ck/ C,, k # S, (2.15) 

and CkE C k ( A ,  t ) .  Clearly, (2.15) is of the same form as (2.7). Hence, in practice, 
this second RDM affords no new route ; one has to follow the first procedure to get { ck} 
and then rearrange the results accordingly; Ic,I is to be evaluated, understandably, 
from the normalisation condition. Also, the rearrangement just stated has been found 
to be somewhat inconvenient (Langhoff et a1 1972). 

m # s  

2.2. Applications 

Guided by the above analysis, we shall now consider the workability of the RDM 

mentioned first. The reason is, if there appears any difficulty with the first form, it will 
continue to remain in the second form also; moreover, this latter procedure is not as 
compact as the former one (see, e.g., Langhoff et al 1972). So, we proceed with (2.7), 
making use of (1.8) and (1.9), to obtain the relevant quantities. 

2.2.1. We first consider the perturbations (1.16) and (1.17). With the choice to =0, we 
obtain the following results for V( t )  = V: 

vks 

hWks 
A(kl)(t) = --[exp(iwk,t) - 11, (2.16) 

(2.17) 

etc. Clearly, the presence of secular terms (e.g., the last term of (2.17)) from Aiz’(t) 
onwards indicates that this rearrangement is not useful. Such a conclusion is actually 
not quite unexpected if we remember that, in this case, perturbative solution free from 
secular terms is obtained through the use of the UPDM (Bhattacharyya 1984) where 
CY, # w,  ( m  = s, p, . . .) and that this flexibility is absent in the RDM. For the oscillatory 
perturbation (1.17), it is evident that a similar conclusion will follow. Another objection 
against the applicability of this procedure to the cases (1.16) and (1.17) is that the 
assumption required to obtain (2.2) from (2.1), 

% ( A ,  t )  + 0 (2.18) 

for any t at some fixed value of A, is difficult to justify: in other words, it is not at all 
apparent why J/x,// should always be finite. This may actually lead to some trouble of 
convergence. We shall discuss more about this point later. 

2.2.2. For the perturbation (1.18), we now consider the usually prescribed (Epstein 
1969, T‘odorov 1981) form forf(?)  which is given by 

(2.19) 
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and, at the end, the limit 71 + 0, is put. With such a function, we find in the adiabatic 
limit (7 .+ 0,) 

(2.20) 

(2.21) 

etc. Hence, ,ys(A,  t )  in (1.7) takes the form 

Let us recall at this point the implication of quantum adiabaticity. What we expect 
for the perturbation (1.18) is that expectation values like (I,bs(A, t ) l  WII,bs(A, I)), 
l l $ s ( ~ ,  t)ll = 1, after the required infinite time interval, should agree with (&I Wl$s), 
11 (L, 11 E 1 ,  where W stands for any Hermitian operator corresponding to some observable 
and $, & ( A )  satisfies 

(Ho+AV)&(A)  = E,&(A), (2.23) 

with the subscript referring to the initial state 4, from which the system has been 
allowed to evolve. In our present context, therefore, we are to show 

(2.24) lim X S ( &  t )  = L ( A ) ,  
74, 

and then 

lim exp( A Im(4SIV(t’)IXs(A, t ’ ) )  dr’/h) = ( & / $ s ) - 1 / 2  (2.25) 

where JS( A )  =_ 6, also obeys (2.23), satisfying the ‘intermediate’ normalisation condition 
((4sl$s) = 1 )  like , yS (A,  t ) .  But, comparing (2.22) with the Rayleigh-Schrodinger (RS) 
perturbative result for & to second order, it is easily seen that (2.24) fails to hold. In 
fact, this failure is due to the second term (time independent) at the right-hand side 
of (2.21) and precisely such a type of term has been called ‘non-adiabatic’ by Todorov 
(1981). More important, however, is to notice that the normalisation requirement, 
(2.25), also ceases to be obeyed. We find 

10 
7-0, 

Im(4sI V(f’)lXs(A, 0)  

(2.26) 

which, after integration in accordance with (2.19), shows that its first-order contribution 
vanishes in the limit v+O+. Hence, the left-hand side of (2.25) gives no A‘ term; 
whereas, at the right-hand part of (2.25), a term of O(A2) definitely exists (note that, 
to first order, lim,,o+ xS(A, 1 )  = &). This second observation, we think, is rather 
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surprising in view of the way we arrived at (2.6). Perhaps, the reason behind such a 
contradiction lies in using the form (2.19) for f ( t ) .  In our opinion, (2.19) is somewhat 
inappropriate in defining adiabaticity because, as long as 7 # 0, the time t = 0 has a 
meaning, but this 'zero' of time loses significance when the adiabatic limit 7 + 0, is 
put. In other words, here the notion of adiabaticity is incompatible with the specification 
of some t = 0. So, in what follows, we shall not consider this particular switching 
function. Instead, as we remarked elsewhere (Bhattacharyya 1984), the form 

f (  t )  = e"', to = -CO < t, 7+0+ (2.27) 

will be used, and we shall actually demonstrate its adequacy. 

2.2.3. We now consider the function 

once again for the case (1.18), where finally the limits T -$ CO, t /  T +  1 are to be taken. 
This type ( t" /  T",  n 2 1 )  of switching functions is known to lead to non-adiabatic terms 
in the DM (Todorov 1981). The present formulation (RDM) also, in fact, cannot avoid 
the appearance of such terms. For example, we obtain here the following results: 

vks lim AV)( t )  = -- exp(iwk,t), 
T-02 hwks 

f,'T-+l 

(2.29) 

(2.30) 

etc. Evidently, just like the previous case, we have a non-adiabatic term in AV'( t) (the 
last term at the right-hand side of (2.30)) in the adiabatic limit. On the other hand, 
from the expression 

exp(iwkst) - 1 AVi( t )  = -- 
iwks 

(2.31) 

we find that 

and this result, on integration, gives us the left-hand side of (2.25) 

(2.33) 

The agreement between (2.33) and the right-hand side of (2.25) to O(A2) is now 
apparent from (2.29). Thus, we may conclude that this second case is not as severe 
as the first one. Indeed, we shall see that the difficulty with the non-adiabatic terms 
for the f( t )  defined by (2.28) can be bypassed in the RUPDM. 

2.2.4. With the results of the above scrutiny in mind, let us now proceed with the form 
(2.27) for f ( t ) .  In this case, we find for the perturbation (1.18), unlike (2.22), the 



Perturbative quantum dynamics 75 

following form for ,ys(A, t )  in the adiabatic limit: 

(2.34) 

This is our desired result. We may well note that (2.34) can also be written as 

lim xs ( A ,  t 1 = las + Ala:'' + A 'la'," + A 
7-0, 

+ O( A ') 

= $ , + o ( A ~ )  (2.35) 

where 4;') denotes the ith-order RS perturbation correction term (to @,) for GS that 
obeys (2.23), with (qbsl$s)= 1 .  Thus, we see that (2.24) is verified to third order, and 
we expect that this equality will hold to all orders. It now remains only to check 
whether (2.25) is also obeyed. To proceed, we consider for simplicity that v, = V,, 
and find 

whereas the Im L E s ( &  t )  part becomes 

(2.36) 

(2.37) 

which, on integration, gives the left-hand side of (2.25) under the adiabatic limit as 

(2.38) 

From (2.36) and (2.38), it is clear that (2.25) is satisfied up to the third order, and 
again we expect that this agreement will continue to hold to any order. So, we are 
now in a position to conclude that (2.27) is the proper adiabatic switching function, 
at least in so far as the success of the RDM is concerned. For the sake of completeness, 
however, it may be of some interest to evaluate the phase part of +s(A,  t ) ,  the exponential 
factor at the right-hand side of (2.9). Calculation shows that Re AE,(A, t )  is of the form 

Integrating (2.39) and taking subsequently the limit 7 + 0+, we find that the overall 
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phase factor becomes 

exp[ - i ( q  + AwY'+ A2w:*'+ A3wS3' + O(A4)) t ]  

377 
(2.40) 

where hw j" stands for the ith-order Rayleigh-Schrodinger ( RS) perturbation correction 
term for E, in (2.23), i.e., 

E,=E, (A)=  hws+Ahw(,"+A2hw(,2'+. . .  ; (2.41) 

understandably, the second exponential part in (2.40) accounts for the divergent phase. 

2.2.5. Having established the suitability of (2.27) as the adiabatic switching function 
in the present context, we now consider the perturbation (1.19) and use (2.27). The 
coefficients in this case become 

(2.42) 

etc. So, in the adiabatic limit, xS(A, t )  takes the form 

(2.44) 

Notably, putting w = 0, with Vi = V, we get back the results for the static case 2f( t )  V .  
Of importance is to see now the form of a,(A, t )  given by (2.4). Again, for simplicity, 
we choose Vt  = V and V, = vi, and then find 

lim exp( -'" 1' Re AE,(A, t ' )  dt '  
7-0, h --oc 
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x (er + + 2 t ) + O( A ’)I} 
U 7 7  

corresponding to the first exponential part of 

77 

(2.45) 

(2.4), and 

7+0+ lim exp(: Im AE,(A, t’)  d f )  

=exp[-A’ 1 $( 1 2 +  1 + 2  +O(A’) ]  
m # s  2(wm, + w )  2(wm, - w)’  U,, - w 2  

(2.46) 

which agrees with the right-hand side of (2.6) to O(A2),  we have checked. Also, secular 
terms d o  not appear to invalidate this procedure. However, it is not quite clear whether 
the condition (2.18) is satisfied throughout in this case. 

2.3. Summary 

We summarise our findings of this section as follows. 
(i) The second kind of RDM does not have any practical advantage; so, we shall 

henceforth consider the first kind only. 
( i i )  The RDM does not successfully work for the perturbations (1.16) and (1.17) 

because of the appearance of secular terms. 
(iii) The form (2.19) for f (  t )  does not appear to be appropriate; we shall not use 

it afterwards. 
(iv) The procedure concerned fails to efficiently handle the form (2.28) for f (  t )  in 

the course of dealing with (1.18); a similar conclusion hence follows for the case (1.19). 
(v) For the perturbation (1.18), with f ( t )  given by (2.27), results show that the 

RDM is not useful if 4, is degenerate (i.e., when some U,, = 0). 
(vi) From the results for the perturbation (1.19) with the switching function (2.27), 

we find that this scheme again ceases to work either when there is an  initial degeneracy 
(see, e.g., the O(A2) term in (2.44)) or when a resonant oscillatory field (nw = +U,,; n = 
1,2, . . .) acts. 

3. Rearrangement of the Dirac method with undetermined phase 

We have mentioned in 0 1 that the UPDM (Bhattacharyya 1984) works in a number of 
cases. But, whereas for perturbations like (1.16) and (1.17) the method applies directly, 
one has to proceed through some indirect route to treat the adiabatic case (1.18), and 
moreover the method apparently shows difficulty in handling a problem like (1.19). 
So, here we wish to study the RUPDM for which 4s(A, t )  is given by (1.13); the procedure 
will turn out to be of value, as we shall see just now, in dealing with some important 
problems which the RDM fails to tackle. 

3.1. Theory 

To proceed, let us first have a glance at the basic structure of the RUPDM. Following 
the earlier development ((2.1)-(2.9)), we put (1.13) in (1.2) and divide the result 
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throughout by b,(A, t )  to obtain 

ihaj , /a t  = [ H ( A ,  1 )  -ha ,  -iha In b,/at]xr, (3.1) 

where again zs f , ( A ,  t ) ,  b, = b,(A, t ) .  Clearly, implicit here is the assumption that 

b,(A, t )  # 0. 

The 4s projection part of (3.1) leads to 

& ( A ,  t )  = exp( -: 1‘ F,(A, t ’ )  dt’) 
10 

after integration, which can be rewritten as 

b, =exp( -a 5‘  Re F’(A, t’) dr‘) exp( l r  Im F,(A, t’) dt’/h 
In f 0  

where 
Fs(A, t )  = (h \H(A,  1)lR)- ha5. 

From (3.1) and (3.3), it is easy to see that 

like the previous result (2.6); we also note that (3.1) takes the form 

ihaf,/at = [ H ( A ,  t )  - ( d 4 H ( ~ ,  t ) l ~ , ) l , ~  

and the & projection part of this equation gives 

ihd&/af = Bk(hWkr-hCl’ks)+hVfc* eXp(iak,f)-ABkV:, 

+ A  C B,v:, exp(iak,t) - A &  B,v:, exp(ia,,t) 
m f r  m # s  

with & = & ( A ,  t )  = bk(A. t ) / b , ( A ,  t ) ,  which is actually the working equation. 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

For a 
perturbative procedure to develop, we only need additionally (1.12), (: 1.14) and (1.15) ; 
then, the resulting set of perturbation equations are solved order-by-order. 

3.2. Applications 

It is clear from (3.8) that the RUPDM reduces to the RDM for the choice ap = up. But, 
we shall here use (1.12) and, for convenience, deliberately suppress the A dependence 
of amn in exp(ia,,t) (Bhattacharyya 1984) to evaluate the undetermined {a:)}. Thus, 
our scheme resembles the stationary Brillouin- Wigner ( BW) perturbation theory (see, 
e.g., Bhattacharyya 1982) in some sense. The strategy will be more transparent as we 
treat below specific problems. 

3.2.1. We first consider the perturbation (1.18), with (2.28), to immediately see the 
usefulness of the RUPDM. From the first-order equation 

ihaB‘,L’(t)/at = v;, exp(iakst) (3.9) 
we find that 

exp(iak,t) - 1 
a!u 

BV’(t) = -- t exp(iak,t) - i  (3.10) 
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which shows, in the adiabatic limit we have 

The second-order equation 

then gives 

(3.11) 

(3.12) 

(3.13) 

The undetermined ai:) is now evaluated from (3.13) by requiring that B(kZ)(f) would 
not contain any constant term in the adiabatic limit. Indeed, this will be our general 
strategy for the evaluation of any a t ' .  Following such a prescription, we find 

and hence, 

t / 7 - 1  

Similarly, from the third-order equation, we obtain 

and 

(3.16) 

(3.17) 
n t k s  

Thus, we do  not have here any non-adiabatic term, unlike the RDM. It may also be 
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checked by using (1.13), (3.11), (3.15) and (3.17) that 

lim x,(A, 1 )  = is + o ( A ~ ) ;  
T-m 

t / T - l  

(3.18) 

we just require (1.12), (3.14) and (3.16) to properly expand the denominators in order 
to achieve this end. Hopefully, (3.18) will be satisfied to all orders. To check whether 
(3.6) is satisfied, we evaluate ( f s ( f s )  in the adiabatic limit and find, considering V, = Y i ,  
that 

On the other hand, calculation shows 

(3.19) 

(3.20) 

and it is clear from (3.19) and (3.20) that (3.6) is satisfied to O(A3); once again, we 
hope that this will hold to all orders. Finally, the overall phase term, as (1.13) and 
(3.4) reveal, 

exp(-ia,t) exp( -i lof Re Fs(A, t ' )  dt ' /h  (3.21) 

becomes 

exp[ -;( ho, +i A v,, -- A' - '" + O(A4)) t ] 
3 m # s  h a m s  

(3.22) 

under the specified limiting situation. Let us note here that actually the phase (3.22) 
is infinite because adiabaticity ( T + CO, t /  T + 1) requires t + CO. Thus, although we 
have found a somewhat different expression for the phase factor following the UPDM 

in this particular case (Bhattacharyya 19841, it does not really matter; one may view 
this difference as being equivalent to the fact that exp(i xconstant)$,(A, t )  is also a 
solution of (1 .2)  if $,(A, t )  is one. 

3.2.2. We now reconsider the case (1.18), but with f ( t )  given by (2.27), in order to 
arrive at a form which works even if the initial state is degenerate. It is evident that 
here the RUPDM does not apparently lead to any improvement if we follow the previous 
strategy to evaluate {a::}, because in this case the RDM works successfully. So, we 
shall have to adopt a somewhat di'erent scheme to exploit the flexibility of the RUPDM. 

Thus, our endeavour will be to choose the {a:?} in such a way that the final results 
resemble a BW type of development in the static limit. To achieve this end, we first 
note that the first-order equation gives 

(3.23) 
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From (3.23) and the second-order perturbation equation, we then find 

(3.24) 

Since we wish to have the coefficients such that 

lim x ~ ( A ,  t )  = & ( A )  = 4 5 + ~ + : ) + ~ 2 + : 2 ) + .  . . (3.25) 

is obeyed order-by-order, where ILj” stands for the ith-order BW perturbative result, 
we shall examine the structure of lim,+,,+ B(kn)(t) at each step. From (3.24) we see that 

q + O +  

only if we choose 

ha(’) - - ks - vss. 

(3.26) 

(3.27) 

Similarly, from the third-order equation, we obtain By’( t )  and note that the requirement 

is satisfied only when the choice 

is made. Thus we have 

lim f s ( A ,  t ) = & + A  (B!,!’(t)+ABE’(t)+..  .)& exp(ia,,t) 
7+0* m i s  

and from (3.27) and (3.29) we can write 

hak = ha = h @ k ,  

(3.28) 

(3.29) 

(3.30) 

(3.31) 

which reveal that indeed a BW type of scheme has emerged; hence (3.25) is obeyed, 
at least to third order which we have checked. The normalisation requirement (3.6) 
has also been checked to O(A3) and found satisfied. In fact, we obtained for the 
left-hand side of (3.6) the expression 

(3.32) 
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in the adiabatic limit, assuming, of course, that V,, = Yi, for simplicity; it agrees with 
the right-hand side of (3.6) as may be seen from (3.30). 

It is worth noting in this context that the above strategy for the evaluation of {a:;} 
which corresponds, in effect, to having a BW form for the un-normalised wavefunction 
,&(A, t ) ,  as (3.25) shows, is by no means unique. In fact, this non-uniqueness associated 
with non-zero choices for {a(,“,)}, n 3 1 ,  just reflects various possible ways, with different 
partitionings of the final Hamiltonian H = Ho+ A V ,  of arriving at the state 9, = 
lim,,,+ i s ( A ,  t )  by resumming its perturbation series. For example, a still more resum- 
med version than the one given by (3.30) and (3.31) is possible if we choose 

hat: = v k k  - vss, (3.33) 

instead of (3.27), to obtain from (3.24) 

Solving the third-order equation, we then calculate B(k3’( t )  and choose 

to find 

n # k.m.s 

Thus, here we have 

n # m,r 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

where 

haks = h W k s  + ( v k k  - vsx) + A 2  ( A s x - m + k , x  V s m  V m s  c =)+o(A3). h a m s  (3.38) 

It is easy to see by employing (3.38) in (3.37) that the latter equation can also be 
written in the form 

(3.39) lim & ( A ,  t )  = 45 +A$(,” + A’$:*’ + A3$t3’ + O(A4), 
? - O +  

as required. We have also checked the validity of (3.6) to O(A3). Once again, this 
resummed version also applies euen if the initial state is degenerate. 

3.2.3. For the adiabatically developed oscillatory perturbation ( 1.19), a similar scheme 
can be followed by choosing the form (2.27) forf(  t )  to arrive at results which desirably 
work in situations where application of the RDM leads to troubles. The expressions 
for the first few orders of { B y ) (  t)} and {*E)} are given below without going into the 
detail: 

(3.40) 
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We see that (3.40) and (3.41) are structurally similar to (2.42) and (2.43), respectively, 
in the adiabatic limit, so that the validity of (3.6) to O ( h 2 )  follows immediately; only, 
here we have {ars}  in the denominators in place of {U,,} appearing in the RDM. But, 
in effect, the presence of such {ars} ,  which obey an  equation like (3.42), makes this 
scheme, the RUPDM, fruitful in dealing with situations involving a degeneracy or  
resonance. It may also be noted that the perturbation equations for this problem are 
of such a nature that only even order terms in A at the right-hand side of (3.42) will 
survive. Thus, the structural similarity with the results of the RDM mentioned just 
above will be lost from B y ’ ( t )  onwards. 

3.2.4. The perturbation (1.16) will now be considered. Applying the RUPDM straightfor- 
wardly, we obtain from the first-order equation 

B(1) vks 
k ( t )  = --[exp(iak,t) - 13. 

h f f k s  

From the second-order equation we remove the secular terms by choosing 

Similarly, at the third order, we take 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

(3.47) 
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It is easy to  check that these results agree with those obtained by employing the UPDM 
(Bhattacharyya 1984) remembering the relation & ( A ,  t )  = bk(A, t ) /b , (A,  t ) .  In fact, 
here the RUPDM allows one also to calculate b,(A, t )  perturbatively; it can be performed 
as follows. We put (1.13) in (1.2) to obtain from the 4, projection part of the resulting 
equation 

(3.48) ihab,/at = ((&IH(A, t ) l x s ) -  has)bs 

which we rewrite, for the case (1.16), as 

i h d ( b ~ o ’ + A b j ’ ’ ( t ) + A 2 b f 2 ’ ( t ) + .  . . ) / a t  

= ( AVss + A’ (B(,,!,)( t )  + AB:’( 1 )  + . . .) V,, exp(ia,,t) 
m f s  

- A (  h a ~ ’ ) + A h a ~ * ’ + ,  . . ) ) ( b y ) +  A b y ) ( t )  + A2b‘,z)(t) + . . .). (3.49) 

As usual, we now solve it order-by-order by choosing {cui”’} such that no constant 
terms appear at any order. Thus, we find 

ha:” = v,, (3.50) 

and 

bj”( t )  = 0 (3.51) 

from the first-order equation. At the next order, we obtain 

and 

(3.52) 

(3.53) 

The procedure can be continued easily and the results thus obtained agree with those 
obtained through the UPDM, as expected. Notably, only if we proceed with (3.48) to 
calculate b,(A, t )  we find the undetermined phases {a:”)} separately, and hence {a(kn)} 
also; otherwise, { c u ( k : ) }  are obtained, as we have seen. However, it is not mandatory 
to follow this perturbative scheme for b,(A, t )  in the RUPDM; rather, the advantage 
here is that one need not actually compute it. This is because, the really relevant part 
of b,(A, t ) ,  as (3.4) and (3.6) show, only accounts for the proper normalisation of 
, fs(A,  t ) .  Using (3.43) and (3.45), we have also checked the validity of (3.6) to O(A’) 
for the case of a real V. 

Clearly, this procedure can also be successfully applied to deal with the perturbation 
(1 .17 ) ;  secular terms will not appear and the results which one would obtain are 
obvious from the work of Bhattacharyya (1984) on UPDM. So, we are not going to 
explicitly work them out here, within the RUPDM. 

3.3. Summary 

Our observations may now be summarised as follows. 

is more general. 
( i)  The RDM may be viewed as a special case of the RUPDM;  hence, the latter one 
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(ii) This procedure works successfully for the perturbation (1.18) with the switching 
function (2.28). Moreover, results show that no difficulty will arise even if the initial 
state becomes degenerate. Understandably, then, the RUPDM will also work for the 
case (1.19) if the form (2.28) is used as f(t). 

(iii) From the results for the perturbation (1.18), wheref(t)  is given by (2.27), we 
again find no difficulty with degeneracy. It is also evident from our work that here a 
specific choice for the unknown phases {ag)} corresponds actually to working with a 
particular partitioning of the total Hamiltonian in a time-independent context to obtain 
that perturbed stationary state which the present scheme gives in the adiabatic limit. 

(iv) The perturbation (1.19), with (2.27) as f( t ) ,  is also successfully treated by this 
procedure even when the unperturbed initial state is degenerate or the applied perturba- 
tion corresponds to a resonant one. 

(v) The RUPDM can also be successfully employed to deal with the case (1.16), 
and hence the one given by (1.17). 

4. Discussion 

It goes without saying that the RDM, the UPDM and the RUPDM are basically various 
rearrangements of the DM. For a given problem, we consider some particular scheme 
convenient if it is able to just directly avoid the appearance of specific undesirable 
terms (e.g., terms proportional to t “ ( n  2 1) or v-l ,  etc, in the cases considered) from 
the amplitudes at any order of the perturbation; otherwise, one has to actually take 
the trouble of ultimately rearranging such unphysical terms to a meaningful form and 
this task may be quite intricate. We may emphasise, if this a posteriori rearrangement 
is not performed, several problems may appear. For example, application of the DM 

or the RDM to the problem (1.16) shows oscillatory behaviour of the so-called ‘survival 
probability’ at first order and does not respect the spectrum of H ;  but we know that 
this probability will decay if the spectrum of H is continuous (see, e.g., Bhattacharyya 
1983). Moreover, it appears from the t “-proportional amplitude-correction terms that 
perturbative developments are valid for short times only (see, e.g., Bhattacharyya 
(1984) and references therein for a discussion) which should not have been the case 
(Bohm 1951). On the other hand, these difficulties are naturally avoided in the UPDM 

or in the RUPDM owing to the appearance of eigenenergy differences correspofiding 
to the perturbed Hamiltonian in the amplitude-correction terms (so that for the case 
of a continuum, the inapplicability of such a perturbative approach becomes apparent) 
and the absence of any secular terms, respectively. Keeping these in mind, we see 
from the results presented here that only the RUPDM works .desirably in all the cases 
under study. 

Removal of the types of undesirable terms mentioned above from the solutions at 
each order, however, does not guarantee the convergence of a procedure. In case of 
the RUPDM, for example, if the condition (3.2) is not obeyed, difficulty with the 
convergence of the expansion (1.14) becomes obvious because the series concerned 
has to then represent functions with infinite values, though it may be true that the 
correction terms of any order remain finite. But, except for the problem (1.18)? it is 
difficult to justify (3.2). Actually, for the perturbation (1.16), it can be shown that 
situations may arise to disobey (3.2). To be specific, let us choose a two-level problem 
as an example and write 

H J ,  = hcij,$,, HG2 = hcij2J2? H = H ( h ) ,  114lll = 1 = I I i Z I I ,  (4.1) 
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l l 4 s l l  = 1 '  

In this case, calculation shows that 

( 4 s l $ s ( A ,  t ) )  = 0, 

and hence (3.2) ceases to be obeyed, when 

(4.3) 

IC,I = IC21 = 1 /42  t = (2n + l ) 7 r / ( W z  - GI),  n = L1, +2 , .  . . (4.4) 

For the cases (1.17) and  (1.19), however, it is not easy to assert whether (3.2) will 
always be satisfied. But, it is clear that the RUPDM also is not quite free from all the 
difficulties of a perturbative approach. Needless to mention, the RDM suffers from 
similar troubles owing to the requirement (2.18). 

It seems worthwhile to briefly comment on the performances of the methods under 
scrutiny before proceeding further. Hence, the main features relevant to our study 
(see also Bhattacharyya 1984) are given below in a tabular form, for convenience. 

Perturbation Method Comments 

(1.17) 

(1.18) 
with 
(2.27) 

(1.18) 
with 
(2.28) 

(1.16) D M  

R D M  

U P D M  

R U P D M  

D M  

R D M  

U P D M  

R U P D M  

D M  

R D M  

U P D M  

R U P D M  

D M  

R D M  

U P D M  

R U P D M  

inconvenient 

inconvenient 

convenient, BW type, applicable to degenerate cases, 
no obvious convergence difficulty 

convenient, BW type, applicable to degenerate cases, 
convergence difficulty in specific situations 

inconvenient 

inconvenient 

convenient, BW type, applicable to degenerate and 
resonant cases, no obvious convergence difficulty 

convenient, BW type, applicable to degenerate and 
resonant cases, convergence difficulty may appear 

inconvenient 

convenient, RS type, inapplicable to degenerate 
cases, no obvious convergence difficulty 

convenient but indirect, BW type, applicable to 
degenerate cases, no obvious convergence difficulty 

convenient, BW type but flexible, applicable to 
degenerate cases, no obviolls convergence difficulty 

inconvenient 

inconvenient 

convenient but indirect, BW type, applicable to 
degenerate cases, no obvious convergence difficulty 

convenient, BW type, applicable to degenerate cases, 
convergence difficulty in specific situations 
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Perturbation Method Comments 

(1.19) D M  inconvenient 
with 
(2.27) RDM convenient, RS type, inapplicable to degenerate and 

resonant cases, convergence difficulty may appear 

UPDM inconvenient 

RUPDM convenient, BW type, applicable to degenerate and 
resonant cases, convergence difficulty may appear 

(1.19) D M  inconvenient 
with 
(2.28) RDM inconvenient 

UPDM inconvenient 

RUPDM convenient, BW type, applicable to degenerate and 
resonant cases, convergence difficulty may appear 

Understandably, compared to the UPDM, the RUPDM suffers from an additional 
difficulty with convergence since in this approach we work with {&(A, t ) } ,  and not 
with {b , (A,  t ) } .  So, it is natural to investigate whether the UPDM itself can somehow 
be modijied to directly bypass the undesirable terms for the adiabatic cases (1.18) and 
(1.19), because then we can definitely consider the UPDM as a general scheme. 

To explore the above possibility, we first proceed with (1.18) and (2.28). The 
perturbation equations in this case suggest that the desirable result can be obtained if 
we choose (i) ab“’ in such a way that no divergent terms in bL”’( t )  exist in the adiabatic 
limit and (ii) ay)( k # s )  such that no constant terms in by+’)( t )  appear, again in the 
same limit. But, when we consider (1.18) and (2.27), difficulties become apparent. 
Actually, in this case, two types of disturbing terms, proportional separately to t ” (  n 1) 
and v-’, are present. Of these, only the latter type of terms can be avoided, and to 
achieve this end we have to render the IC more general. ’For example, the following 
choice of the IC 

b, ( to)  = br’  = 0 = b r ’ (  to) ,  p # s , n = l , 2  , . . . ,  (4.5) 

instead of the one given below (1.12), where 

X (  A )  = AX, + A’X* + . . . (4.6) 
will serve our purpose. The unknown x, is to be then determined from the equation 
for b:’)( t )  such that bii l( to) cancels the 7-’-proportional terms present in bt’)( t )  in the 
limit 7 + 0,. However, the t”-proportional terms cannot be bypassed. Hence, an a 
posteriori rearrangement has to be performed. It is more important to note in this 
context that one can still proceed straightforwardly to efficiently handle this problem, 
but then the form of (CIS(h, t )  has to be chosen properly. Thus, starting from a very 
general choice 

(CIS(A, t ) = C  b m ( A ,  t ) 4 m  exp(-iamt) exp(-iZ,(A, t ) ) ,  (4.7) 
m 

where the 2, part takes care of nonlinear time-dependent phase, if any, we have found 
that if one chooses 

CY, = w,  (4.8) 
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and 

z,,,(A, ~ ) = z ( A ,  t ) = ~ z , e ? ' / q + A ' z ~ e ~ ~ ' / 2 q +  . . .  (4.9) 

in the case concerned, no trouble would arise. Notably, the extra phase in (4.7) can 
then be rewritten as 

.i (Az, e'''+ A2z2 e2""+. . 
-m 

.) dt') (4.10) 

which implies that it vanishes at t = to = --CO. In the adiabatic limit, however, Z(A, t )  
contributes to +,(A, t )  by providing a t-proportional and a divergent (-v-') part 
expressed as powers of the exponential given by (4.10). From the equation for bk')( t ) ,  z, 
can easily be evaluated by requiring the absence of any t- and q-'-proportional terms 
at each order. But, though the form (4.7) is a very general one, and one can legitimately 
call the corresponding perturbative development as a generalised UPDM (GUPDM),  the 
choices (4.8) and (4.9) are understandably quite specific. Thus, if we consider a 
perturbation like (1.19), with (2.27), we have to search for a proper starting form of 
Z,,,(A, t )  afresh. In this sense, the GUPDM is of little practical value; a wise a priori 
guess about the structure of Z,(A, t )  for a given form of the perturbation determined 
its success. 

5. Conclusion 

The motivation behind our study has been to compare the domains of validity of the 
various rearranged versions of the method of variation of constants. Among other 
things, we have thoroughly examined the RDM and demonstrated the superiority of 
the RUPDM over it. Adiabatic perturbations have been given more importance; 
specifically, based on the realisation that the results of an adiabatic passage should 
not depend on the choice of the form for f (  t ) ,  we have considered the applicability 
of two different types of switching functions, (2.27) and (2.28). It is evident that any 
non-exponential form like t " /  T" ,  n > 1 (Todorov 1981), can also be successfully used 
in cases where (2.28) works. It is also worth noting that the increased flexibility of 
the UPDM and the RUPDM relative to the DM and the RDM, respectively, can be 
advantageously exploited by proceeding through a Brillouin-Wigner ( BW) type 
development, and this has become possible owing to the improper nature (Sharma 
1976) of the BW series. 

It turns out from the present analysis that the RUPDM is best suited for dealing 
with such adiabatically developed perturbations as (1.18) and (1.19). However, if we 
wish to successfully apply the GUPDM directly in order to avoid convergence difficulty 
on all counts, choice of Z,,,(A, t )  in (4.7) becomes crucial. This choice is actually 
determined by the nature of the perturbations concerned. For the cases (1.16) and 
(1 .17) ,  of course, the CUPDM applies in its simplest (UPDM) form (1.10). Thus, the 
strategy behind the development of a successful time-dependent perturbation scheme 
appears to be very different from that behind the same of a stationary one. In this 
latter case, various partitionings of the total Hamiltonian correspond to different ways 
of resumming of the perturbation series, whereas, in the former one, the rearranged 
series are found to have correspondences with the choices of the starting form for 
$,(A, t )  to be employed in the S E ,  and also the IC (see, e.g., the discussion around 
(4.5)). A clear delineation of this important point has already been given in § 3.2.2. 
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Finally, we must mention that, unless the form of Zm(A, t )  in (4.7) is sufficiently general, 
such added troubles as non-uniform passage from a diabatic to an adiabatic perturba- 
tion, etc (Bhattacharyya 1984) may also appear, and hence one has to be cautious in 
the course of studying the limiting situations. 
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